Matematika a čísla vůbec
Matematika má už dávno takovou pověst, že je nejpřesnější a nejpřísnější vědeckou disciplínou, a její postupy že jsou naprosto přesné a průhledné. Bedlivější sledování vskutku všech jejích postupů však ukáže, že předpokladem (a dokonce nutným a nezastupitelným předpokladem) – a tedy mezí, hranicí – její přesnosti a přísnosti jsou některé nelogičnosti a dokonce protilogičnosti, které si jako jakousi „oběť“ božstvu přesnosti vynucuje její údajná „dokonalost“. Historicky již od počátku úzce souvisela číselná matematika nejen s čísly, ale také s matematikou plošných útvarů, především trojúhelníků, takže příklady lze vzít z obou zmíněných disciplín (hlavní problémy jsou vlastně společné). V geometrii jsou údajně s naprostou přesností „míněny“ čili pojmově „konstruovány“ takové údajné „skutečnosti“, jako jsou body, úsečky, ploché obrazce, stereoútvary a jejich geometrické vlastnosti atd. Vždycky tam shledáváme, že ani velký počet bodů nemůže vytvořit ani nejkratší úsečku, ani největší počet úseček nevytvoří ani nejmenší plochu, a tak bychom mohli pokračovat dále. A nejde jen o to, že takové vytvoření či vytváření by nutně znamenalo pohyb a časovost, což v geometrii (ani ve světě čísel) přece neexistuje. I když od ztráty „času“ či spíše abstrahování od času zcela odhlédneme, zůstáváme v rozpacích, jak se to má jednak s nulou, jednak s nekonečnem, a v „prostoru“ tedy jak se to má s bodem o nulových rozměrech ve vztahu k úsečce, nebo jak se to má ve vztahu s úsečkou ve vztahu k ploše. Naučili jsme se s tím pracovat, prostě od některých postupů si držíme odstup a dáváme je zcela stranou (třeba nulou nedělíme, abychom nemuseli volit mezi rozmanitými nekonečny apod.) To však je nemožné a nemyslitelné, když aplikujeme matematiku na skutečnost, na skutečný svět, kde nikdy nemůžeme dělit do nekonečna, ale vždycky musíme jakékoli dělení někde zastavit. Tam si musíme počínat s kvantifikováním opatrně, a to právě s vědomím, že to, co platí v matematice (a se všemi jejími zvyky), nemusí platit a neplatí v „realitě“. A musíme také vzít na vědomí, že některé události a děje nemohou být po všech stránkách kvantifikovány, což nám vždy znovu připomíná, že svět čísel a matematiky (a geometrie atd. – a vůbec svět pojmových konstruktů – to by vyžadovala zvláštní ohled a rozbor) není totožný se světem skutečným a že nepředstavuje jediný možný způsob, jak informace o skutečném světě můžeme (a budeme) organizovat.
(Písek, 140831-1.)